🐍 Basic Python Course Outline
1. Getting Started
2. Python Fundamentals
3. Control Flow
6. Built-in Functions
6.User defined Functions and special functions
6. Decorators (Intro)
12. Mini Projects
🐼 Pandas Course Outline
1. Introduction to Pandas
5. Data Selection & Indexing
6. Data Aggregation & Grouping
7. Merging, Joining, and Concatenation
8. Data Visualization with Pandas
9. Input & Output with Files
10. Advanced Pandas Concepts
11. Mini Projects
🤖 Scikit-learn Course Outline
1. Introduction
- What is scikit-learn?
- Installation (pip install scikit-learn)
- Core concepts: Estimators, Transformers, Pipelines
2. Working with Data
- Loading built-in datasets (Iris, Digits)
- Loading external datasets with Pandas
- Splitting data (train_test_split)
- Feature scaling & preprocessing (StandardScaler, MinMaxScaler)
3. Supervised Learning – Regression
- Simple & Multiple Linear Regression
- Polynomial Regression
- Regularization: Ridge, Lasso, ElasticNet
4. Supervised Learning – Classification
- k-Nearest Neighbors (k-NN)
- Logistic Regression
- Decision Trees & Random Forests
- Support Vector Machines (SVM)
- Naïve Bayes
- Gradient Boosting (XGBoost, LightGBM)
5. Model Evaluation & Validation
- Accuracy, Precision, Recall, F1-score
- Confusion Matrix
- ROC Curve & AUC
- Cross-validation (cross_val_score)
- Hyperparameter tuning (GridSearchCV, RandomizedSearchCV)
6. Unsupervised Learning
- k-Means Clustering
- Hierarchical Clustering
- DBSCAN
- Dimensionality Reduction (PCA, t-SNE)
7. Pipelines & Feature Engineering
- Building pipelines (Pipeline, make_pipeline)
- Feature extraction & selection
- Encoding categorical data (OneHotEncoder, LabelEncoder)
- Handling missing values (SimpleImputer)
8. Advanced Topics
- Ensemble Methods (Bagging, Boosting, Stacking)
- Handling imbalanced datasets (SMOTE, class weights)
- Time series forecasting basics
- Custom Transformers & Estimators
9. Real-World Projects
- Predict House Prices (Regression)
- Email Spam Classification
- Customer Churn Prediction
- Image Classification (Digits dataset)
- Market Segmentation (Clustering)
No comments:
Post a Comment