PYTHON

🐍 Basic Python Course Outline

1. Getting Started
2. Python Fundamentals
3. Control Flow
4. Loops
6. Built-in Functions
6.User defined Functions and special functions
6. Decorators (Intro)
7. Data Structures
8. Modules and packages in python
9. File handling and OS interaction in Python
10. Exceptioins and Error handling in Python
11.Bonus:Object-Oriented Programming (OOP) in Python – A Beginner-Friendly Guide
12. Mini Projects

🐼 Pandas Course Outline

1. Introduction to Pandas
2. Pandas Series
3. Pandas DataFrame Basics
4. Data Cleaning & Handling Missing Values
5. Data Selection & Indexing
6. Data Aggregation & Grouping
7. Merging, Joining, and Concatenation
8. Data Visualization with Pandas
9. Input & Output with Files
10. Advanced Pandas Concepts
11. Mini Projects

🤖 Scikit-learn Course Outline

1. Introduction
  • What is scikit-learn?
  • Installation (pip install scikit-learn)
  • Core concepts: Estimators, Transformers, Pipelines
2. Working with Data
  • Loading built-in datasets (Iris, Digits)
  • Loading external datasets with Pandas
  • Splitting data (train_test_split)
  • Feature scaling & preprocessing (StandardScaler, MinMaxScaler)
3. Supervised Learning – Regression
  • Simple & Multiple Linear Regression
  • Polynomial Regression
  • Regularization: Ridge, Lasso, ElasticNet
4. Supervised Learning – Classification
  • k-Nearest Neighbors (k-NN)
  • Logistic Regression
  • Decision Trees & Random Forests
  • Support Vector Machines (SVM)
  • Naïve Bayes
  • Gradient Boosting (XGBoost, LightGBM)
5. Model Evaluation & Validation
  • Accuracy, Precision, Recall, F1-score
  • Confusion Matrix
  • ROC Curve & AUC
  • Cross-validation (cross_val_score)
  • Hyperparameter tuning (GridSearchCV, RandomizedSearchCV)
6. Unsupervised Learning
  • k-Means Clustering
  • Hierarchical Clustering
  • DBSCAN
  • Dimensionality Reduction (PCA, t-SNE)
7. Pipelines & Feature Engineering
  • Building pipelines (Pipeline, make_pipeline)
  • Feature extraction & selection
  • Encoding categorical data (OneHotEncoder, LabelEncoder)
  • Handling missing values (SimpleImputer)
8. Advanced Topics
  • Ensemble Methods (Bagging, Boosting, Stacking)
  • Handling imbalanced datasets (SMOTE, class weights)
  • Time series forecasting basics
  • Custom Transformers & Estimators
9. Real-World Projects
  • Predict House Prices (Regression)
  • Email Spam Classification
  • Customer Churn Prediction
  • Image Classification (Digits dataset)
  • Market Segmentation (Clustering)

No comments:

Post a Comment

🐍What is scikitlearn??